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Abstract
The effect of an external electric field on the exchange interaction has been studied by an exact
diagonalization method for two electrons in laterally coupled quantum dots (QDs). We have
performed a systematic study of several nanodevices that contain two gate-defined QDs with
different shapes and sizes located between source and drain contacts. The confinement potential
is modeled by two potential wells with a variable range and softness. In all the considered
nanodevices, the overall dependence of exchange energy J on electric field F is similar, i.e. for
low fields J increases with increasing F , while for intermediate fields J reaches a maximum
and then abruptly falls to zero if F exceeds a certain critical value. However, the J (F)
dependence also shows certain characteristic properties that depend on the nanodevice
geometry. We have found that the low- and intermediate-field behavior can be accurately
parameterized by a linear function J (F) = αF + β , where α is independent of the nanodevice
geometry and softness of the confinement potential. We have shown that the linear J (F)
relation appears only if the tunnel coupling between the QDs is weak, i.e. the interdot
separation is sufficiently large. This relation becomes nonlinear for the strong interdot coupling.
For specific nanodevices we have found that the J (F) dependence exhibits a plateau in a broad
electric-field regime. The properties of the exchange energy found in the present paper can be
applied to all electrical manipulation of electron spin qubits.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Exchange interaction is one of the most characteristic quantum
effects in many-electron systems. In natural atoms and
molecules, it leads to a singlet–triplet splitting of energy levels
and is responsible for the binding of atoms into molecules.
In solids, it gives rise to the covalent bonding of elemental
semiconductors and ferromagnetic properties of metals. In the
absence of external fields, the exchange interaction in natural
atomic systems is determined by the charges of the nuclei and
the number of electrons and is essentially fixed. Man-made
solid-state analogs of atomic systems, namely quantum dots
(QDs), also called artificial atoms, and coupled QDs (artificial
molecules) can be fabricated in various designed shapes and
sizes. One can also change the depth and range of the potential
confining the electrons. This gives us a unique opportunity

of engineering the quantum states of electrons confined in
the QDs and tuning the exchange interaction. The exchange
interaction between electrons in QDs has been proposed as an
effective mechanism for changing the electron spin, i.e. for
performing quantum logic operations on spin qubits [1, 2].
This mechanism seems to be very promising in quantum
information processing with solid-state nanodevices.

The investigation of the exchange interaction in the
QD-based nanodevices allows us to elaborate the methods
of controlling and tuning this interaction, which in turn
leads to the controlled manipulation of the electron spin
qubits [1–4]. Recently, the exchange-interaction-induced spin
swap operations in coupled QDs have been simulated by a
direct solution of a time-dependent Schrödinger equation [5].
The coherent manipulation of spin qubits in lateral QDs has
been studied experimentally by Petta et al [4], Elzerman et al

0953-8984/09/235601+12$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/23/235601
mailto:adamowski@ftj.agh.edu.pl
http://stacks.iop.org/JPhysCM/21/235601


J. Phys.: Condens. Matter 21 (2009) 235601 A Kwaśniowski and J Adamowski

[6, 7] and Hayashi et al [8]. Hatano et al [9] determined
the tunnel and exchange couplings in laterally coupled vertical
QDs. The quantum logic operations can also be performed in
nanowire double QDs [10].

The exchange energy is defined as

J = ET − ES, (1)

where ET and ES are the lowest triplet and singlet energy
levels, respectively. In the physics of solid-state nanodevices,
exchange energy (1) plays a twofold role: (i) it determines the
strength of the exchange interaction (Heisenberg interaction),
which can swap the spin qubits [1–3, 5] and (ii) J can be
treated as the exchange splitting (singlet–triplet splitting) that
allows us to distinguish the different spin states of the electron
system [4]. In both cases, we should know how to tune J by
applying external fields.

In the coupled QD system, the exchange energy
was calculated by several groups [2, 3, 11–27]. The
effect of an external magnetic field was investigated in
papers [2, 3, 18, 17, 21, 22]. A magnetic field, applied
perpendicularly to the plane of the electron movement,
lowers the energy of the triplet state, which decreases the
exchange splitting. The asymmetry of the QDs gives rise
to an enhancement of the exchange interaction [17, 22].
The size effects in the exchange coupling were studied
in papers [23, 25, 27]. The increasing size of the
coupled QD system leads to the decrease of the exchange
energy [23, 25, 27]. For two identical elliptic QDs Zhang
et al [22, 24] calculated the exchange energy as a function
of aspect ratio r = Ry/Rx , where Rx(Ry) is the extension
of the QD in the x(y) direction. They obtained the increase
of J with increasing r for r � 1.5 [22] and the sharp
variation of J as a function of interdot detuning for r �
3 [24]. The influence of an external electric field on the
exchange energy was studied in papers [3, 26] for vertically
coupled self-assembled QDs. Burkard et al [3] assumed the
harmonic confinement potential and calculated the exchange
energy for the vertically coupled QDs using the Heitler–
London and Hund–Mulliken techniques. These results [3]
show the monotonic decrease of the exchange energy with the
increasing in-plane electric field. Pedersen et al [23] calculated
the exchange energy for the harmonic double-dot confinement
potential using the numerically exact approach and showed
the failure of standard approximations (i.e. Heitler–London,
Hund–Mulliken and Hubbard) even for simple model systems.
In the present paper, we have elaborated a numerical procedure
that provides accurate results for the lowest-energy states of the
two electrons in laterally coupled QDs. Using this method,
we have performed a systematic study of QD nanodevices
with different geometry and confinement potential profile.
In this study, we have applied the confinement potentials
with a different softness, i.e. we have taken into account
a variable smoothness of the QD interface [28]. We have
investigated a large class of realistic potentials with finite
depth: from the soft Gaussian potential to the hard rectangular-
like potential [27, 29].

A high fidelity of quantum logic operations on spin qubits
can be achieved if the exchange interaction is possibly strong.

This leads to the problem of designing such a nanodevice,
in which the exchange interaction is maximal. A possibility
of tuning the exchange interaction with the help of external
fields is another important issue of quantum computing in
solid-state nanodevices. In the present paper, we focus on
the electric-field-induced tuning of the exchange interaction in
laterally coupled QDs. We note that the electronic properties
of the electrostatically gated QDs [30, 31] can be modified
by changing the voltages applied to the gates, which changes
the potential confining the electrons in the nanodevice. This
leads to another method of exchange interaction tuning by
changing the gate voltages. In the present paper, we have
also investigated this method by studying the effect of the
variable range and softness of the confinement potential on the
exchange energy. In the gate-defined QDs [6, 7], the range
and softness of the confinement potential are determined by
the voltages applied to the gates [30–32].

The present paper is organized as follows: in section 2, we
briefly describe the theoretical model and the computational
method used in the calculations. Section 3 contains the
numerical results, section 4 a discussion and section 5 the
conclusions and summary. The details of the computational
approach are presented in the appendix.

2. Theory

We study the system of two electrons confined in two laterally
coupled QDs and subjected to a static homogeneous electric
field. The lateral QDs are usually created in a quasi-two-
dimensional electron gas by applying suitably chosen voltages
to the gates, which are placed on the surface of the nanodevice
above the plane in which the electrons move [6, 7, 4].
Therefore, we have assumed two-dimensional (2D) motion
of the electrons. Figure 1 displays (a) the geometry of the
nanostructure and (b) the confinement potential profile in the
x direction. We assume that the potential energy of the
electron in the single QD is described by the power-exponential
function [29]

Uμ(r) = −U0μ exp{−[(x − x0μ)
2/R2

μx

+ (y − y0μ)
2/R2

μy]p/2}, (2)

where the index μ labels the QDs (μ = l and r for the left and
right QD, respectively), U0μ is the potential well depth (U0μ >

0), r = (x, y), r0μ = (x0μ, y0μ) is the position of the QD
center and Rμx (Rμy) is the range of the confinement potential
in the x (y) direction, i.e. it determines the extension of the
QD in the corresponding direction. The parameter p (p � 2)
describes the softness of the confinement potential at the QD
boundaries, i.e. the smoothness of the QD interfaces [28]. For
p = 2 we deal with the soft Gaussian potential, while for
p � 4 the potential can be treated as ‘hard’. In particular, for
p −→ ∞ potential energy (2) takes on a rectangular shape.
The form (2) of the confinement potential energy allows us to
model a large variety of QDs with different shapes, sizes and
interface smoothness.

For the coupled QDs the confinement potential is the sum
of single QD confinement potentials (2):

Uconf(r) = Ul(r)+ Ur(r). (3)
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Figure 1. (a) Schematic of the coupled QDs. Solid (green) curves correspond to the extensions of the QDs. (b) Profile of confinement
potential energy U plotted as a function of x for y = 0 with (solid (red) curve) and without (dashed (blue) curve) the external electric field.
The vertical lines show the boundaries of the left (l) and right (r) electrode. The parameters of the nanodevice in panel (b):
Rlx = Rly = 20 nm, Rrx = 20 nm, Rry = 40 nm, d = 80 nm, p = 10 and V = 60 mV.

The x axis is directed along the straight line connecting the
centers of both the QDs (cf figure 1(a)). Here, we take x0l =
−x0r and y0l = y0r = 0. The QDs are separated by the
potential barrier, i.e. the distance d between the QD centers
is larger than Rlx + Rrx .

We investigate the nanodevice which consists of coupled
QDs placed between the left and right metal contacts (cf
figure 1(b)). The electrodes are separated by a finite distance
L and a static external voltage V is applied between them.
In the semiconductor region, the electrodes generate the
homogeneous electric field F = (−F, 0, 0), where F = V/L.
The distance L between the boundaries of the electrodes is
related to other geometric parameters as follows: L � d +
2(Rlx + Rrx). In an electric field F, each electron possesses an
additional potential energy �U(r) given by

�U(r) =

⎧
⎪⎨

⎪⎩

0 for x < −L/2,

−eFx − eV/2 for |x | � L/2,

−eV for x > L/2 .

(4)

In the present calculations, we measure the energy with
respect to the electrochemical potential μl of the left contact,
i.e. we set μl = 0. In contrast to papers [21, 26], in
which the infinite range of electric field F was assumed, we
assume a more realistic spatial distribution of the electric
field with finite range. Formula (4) gives the profile of the
electron potential energy in the electric field created by external
voltage V , which—in real nanodevices—is applied between
the source and drain contacts separated by the finite distance.
Formulae (2)–(4) set up a model of the nanodevice (figure 1),
which consists of the left (l) and right (r) metal electrodes,
and the semiconductor material, in which both the QDs are
embedded. The QDs are separated by the barrier potential
region. The total potential energy of the single electron is given
by

U(r) = Uconf(r)+�U(r). (5)

In the effective mass approximation, the Hamiltonian of
the two-electron system in the coupled QDs is

H = h1 + h2 + e2

4πε0εsr12
, (6)

where h j ( j = 1, 2) is the one-electron Hamiltonian, ε0 is
the electric permittivity of the vacuum, εs is the static relative
electric permittivity of the semiconductor, r12 = |r1 −r2| is the
electron–electron distance and r j is the position vector of the
j th electron. The one-electron Hamiltonian has the form

h j = − h̄2

2me
∇2

j + U(r j ), (7)

where me is the electron effective band mass. We assume that
the electron effective mass and the static electric permittivity
do not change across the QD boundaries. This assumption is
well satisfied for the GaAs-based electrostatic QDs [30, 31].

We solve the two-electron eigenvalue problem by a
configuration interaction (CI) method, which is performed in
a few steps. First, we find one-electron orbital wavefunctions
φν(x, y) using the expansion in a multi-center Gaussian basis
(see the appendix). In the second step, we transform the
one-electron orbitals φν(x, y) into the discrete representation
φmn
ν = φν(xm, yn) on the two-dimensional grid (xm, yn). More

details of this method are given in the appendix. Augmenting
the one-electron orbitals by the eigenfunctions χσ of the z
component of the electron spin we obtain one-electron spin
orbitals ψmn

νσ , where ν is the set of orbital quantum numbers
and σ is the spin quantum number. Spin orbitals ψmn

νσ are
used in a construction of Slater determinants. In the final
step, we construct the two-electron wavefunction as a linear
combination of NS Slater determinants and solve the two-
electron eigenvalue equation by the exact diagonalization. All
the potential energy matrix elements (including the electron–
electron interaction energy) have been calculated with high
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Figure 2. Exchange energy J as a function of electric field F and
softness parameter p for two coupled circular QDs with
Rlx = Rly = 20 nm, Rrx = Rry = 40 nm and d = 80 nm. Inset:
schematic of the nanodevice.

Figure 3. Exchange energy J as a function of electric field F and
softness parameter p for coupled circular and elliptic QDs with
Rlx = Rly = 20 nm, Rrx = 20 nm, Rry = 40 nm and d = 80 nm.
Inset: schematic of the nanodevice.

precision by the numerical quadrature subroutines. We have
performed test calculations for NS = 64, 81, 100, 144 and
169 and obtained a good convergence for the lowest-energy
levels. A good compromise between the numerical accuracy
and computer time has been found for NS = 81; therefore, the
majority of calculations have been performed with 81 Slater
determinants. Finally, we calculate the lowest singlet (ES) and
triplet (ET) energy levels, and exchange interaction energy J
(equation (1)). In the calculations, we have used the material
parameters of GaAs, i.e. εs = 12.4 and me = 0.067me0, where
me0 is the free-electron rest mass, and fix the depth (U0l =
U0r = 30 meV) of the confinement potential. The present
calculations have been performed for circular and elliptic QDs
with aspect ratios [22] r = 0.5, 1 and 2. The exchange energy
has been calculated as a function of external electric field F
for different shapes, sizes and geometric configurations of the
coupled QDs.

Figure 4. Exchange energy J as a function of electric field F and
softness parameter p for coupled circular and elliptic QDs with
Rlx = Rly = 20 nm, Rrx = 40 nm, Rry = 20 nm and d = 80 nm.
Inset: schematic of the nanodevice.

Figure 5. Exchange energy J as a function of electric field F and
softness parameter p for coupled circular and elliptic QDs with
Rlx = 20 nm, Rly = 40 nm, Rrx = Rry = 20 nm and d = 80 nm.
Inset: schematic of the nanodevice.

3. Results

Two lateral QDs form 16 geometric configurations that differ
from each other by their relative size (large/small QD),
shape (circular/elliptic QD), position with respect to the
electrodes (left/right QD) and orientation with respect to the
electric field (ellipse axis parallel/perpendicular to F). In this
paper, we present the results for the four most characteristic
configurations (cf insets of figures 2–5). The preliminary
results for the two circular QDs with the same radius have
been presented in paper [33]1. Figures 2–4 show the results
for the nanodevices, in which the right QD is larger than the
left one. We remind ourselves that the left (right) QD is
located near the electrode with the higher (lower) potential
energy of the electron (cf figure 1). These results (figures 2–

1 This paper deals with the two circular QDs with the same radius. These
preliminary results have been obtained with smaller numbers of Gaussian
functions (A.1) and Slater determinants.
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4) have been obtained for the left circular QD with fixed size,
i.e. Rlx = Rly = 20 nm, and for the different shapes and
sizes of the right QD: circular (figure 2), y-elongated elliptic
(figure 3) and x-elongated elliptic (figure 4). We have found
that—in these nanodevices (cf the insets of figures 2–4)—the
general electric-field dependence of the exchange energy is
similar. In the low-field regime, the exchange energy takes
on either small (figure 2) or zero (figures 3 and 4) values,
at higher fields, increases with the electric field, and—in the
intermediate-field regime—exhibits a cusp followed by a broad
plateau region (figures 2 and 3), in which J (F) takes on
maximal values. At the sufficiently high electric field, the
J (F) curve possesses the second cusp and abruptly falls to
zero. Figures 2–4 also show another general property of
the exchange energy: the maximal values Jmax, reached in
the plateau region, increase with decreasing p, i.e. with the
increasing softness of the confinement potential. However,
the detailed J (F) dependence is different for each of the
nanodevice geometries considered.

The details of the low-field exchange energy behavior are
different in nanodevices with circular (figure 2) and elliptic
(figures 3–5) QDs. For the circular QDs (figure 2) the exchange
energy is non-zero in the absence of an electric field. In the
nanodevice shown in the inset of figure 2, the electrons in the
singlet state occupy the right QD with quite a large probability
already for F = 0. Even the weak electric field causes both
the electrons to become entirely localized in the right QD,
i.e. the double QD system starts to act as a single QD [33]
(see footnote 1). If one of the QDs is elliptic (figures 3–
5), the exchange interaction vanishes in the low-field regime,
i.e. for 0 � F � Fc0, it becomes non-zero at F = Fc0 and
increases linearly with F for Fc0 � F � Fc1. At F = Fc1 the
J (F) dependence exhibits the first cusp, above which J (F) is
nearly constant (cf the plateau regions in figures 2 and 3) or
changes slowly with electric field (cf figure 4). The exchange
energy reaches maximal values Jmax for Fc1 � F � Fc2,
exhibits the second cusp at F = Fc2 and rapidly vanishes
for F > Fc2. For the nanodevice with the larger x-elongated
QD (figure 4) the exchange energy shows variable behavior in
the interval Fc1 � F � Fc2 depending on the confinement
potential softness. According to figure 4, J decreases with
increasing F for p = 2, is nearly constant for p = 3, and
increases with increasing F for p � 4. In the nanodevices
shown in the insets of figures 3 and 4, in the low-field regime,
the electrons are localized in different QDs, i.e. the overlap of
the corresponding one-electron wavefunctions vanishes, which
leads to the vanishing exchange interaction. If the electric
field exceeds the critical value Fc0, the electrons in the singlet
state are entirely localized in the right QD, while the electrons
in the triplet state become more and more localized in the
right QD. This leads to the increase of the exchange energy
in the interval Fc0 � F � Fc1. The plateaus on the J (F)
dependence (figures 2–4) result from the fact that both the
electrons are localized in the right QD and this localization
is almost unchanged in the interval Fc1 � F � Fc2. For
the sufficiently strong electric field the exchange interaction is
equal to zero since one of the electrons tunnels out of the QD
system and is absorbed in the right electron reservoir.

Figure 5 displays the results for the nanodevice with the
left QD larger than the right one. For F � Fc0 there is no
exchange interaction. If the electric field F exceeds Fc0, the
exchange energy becomes non-zero and increases as a linear
function of the electric field. After reaching the maximum at
F = Fc1, the exchange energy exhibits a sharp cusp and falls
to zero. In the nanodevice shown in the inset of figure 5, the
plateau region does not exist, which means that Fc1 = Fc2.

The results of figures 2–5 show that—in the low- and
intermediate-field regime—the exchange energy is a linear
function of the electric field and can be parameterized as
follows:

J (F) = αF + β. (8)

In the nanodevices depicted in the insets of figures 3–5, the
linear parameterization (8) is valid in the electric-field interval
�Flinear = Fc1 − Fc0. The parameter β depends on the
softness of the confinement potential and the geometry of the
nanodevice. In general, β increases with increasing p and—
for the nanodevice shown in the inset of figure 5—takes on
the values from −8.56 meV for p = 2 to −6.86 meV for
p = 100. The results of figures 3–5 show that the parameter
α is independent of the confinement potential softness and the
geometry of the nanodevice. It takes on a nearly constant value
α � 7.73 (meV (kV/cm)−1) for all the nanodevices studied
in the present work. The physical interpretation and possible
applications of the linear dependence (equation (8)) will be
discussed in section 4.

The results presented in figures 2–5 can be explained if we
consider the spatial localization of electrons. It is convenient
to illustrate the distribution of the electrons in the coupled QDs
with the help of the electron density �(r) defined as

�(r) =
2∑

j=1

〈|δ(r − r j )|〉, (9)

where  = (r1, r2) is the two-electron wavefunction.
Figures 6 and 7 display the contours of electron density

� on the x–y plane for the nanodevices shown in the insets
of figures 3 and 5. The results displayed in figures 6 and 7
allow us to trace the changes of electron localization in the two-
electron system confined in the two coupled QDs, which result
from the action of the external electric field. In the absence
of the electric field, the electrons are localized in the different
QDs and there is no overlap between their wavefunctions
(cf figures 6 and 7 for F = 0). Therefore, the exchange
interaction between the electrons vanishes. If we apply an
external electric field, the electrons start to tunnel through the
potential barrier from the left to the right QD and interact via
the exchange coupling. In this regime, the increasing electric
field causes the fast linear increase of the exchange energy
(figures 3 and 5). We note that—even in the low electric-field
regime—the electron distribution considerably changes in the
singlet state, but is only slightly distorted in the triplet state
(cf figures 6 and 7 for F = 0 and F > 0). If the right
QD is sufficiently large (figure 6), the increasing electric field
causes both the electrons to become localized in this QD in
either spin state. In the singlet state, the electrons are localized
in the central region of the right QD, while in the triplet state

5
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Figure 6. Contours of electron density for singlet (left panels) and triplet (right panels) states on the x–y plane for different values of the
external electric field F (in kV cm−1). The darker color corresponds to the larger electron density. Thin solid curves correspond to the sizes of
the QDs. The left QD has a circular shape with Rlx = Rly = 20 nm and the right QD has an elliptic shape with Rrx = 20 nm, Rry = 40 nm;
the other parameters take on the values p = 10 and d = 80 nm.
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Figure 7. Contours of electron density for singlet (left panels) and triplet (right panels) states on the x–y plane for different values of the
external electric field F (in kV cm−1). The darker color corresponds to the larger electron density. Thin solid curves correspond to the sizes of
the QDs. The left QD has an elliptic shape with Rlx = 20 nm and Rly = 40 nm, while the right QD has a circular shape with
Rrx = Rry = 20 nm; the other parameters take on the values p = 10 and d = 80 nm.

the electron density exhibits two maxima clearly separated in
the y direction (cf figure 6 for F = 1.52 kV cm−1). In this
field regime, the exchange energy reaches the largest values.

The double occupancy of the right QD and the separation of
the triplet electrons in the y direction do not change over a
rather broad range of the electric field, which leads to the

6
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occurrence of the plateau on the J (F) plot (figure 3). If
the electric field exceeds the critical value Fc2, one of the
electrons tunnels through the right triangular barrier out of
the right QD and the exchange interaction rapidly falls to
zero (cf figure 6 for F = 3.16 kV cm−1 and figure 7 for
F = 2.40 kV cm−1). The tunneling electron is absorbed in
the electron reservoir of the right electrode. The tunneling
events are determined by the position of the electron energy
levels with respect to the continuum energy edge of the right
electrode, i.e. electrochemical potential μr = −eV . For
F � Fc2 the one-electron energy levels lie below μr =
−eV . This means that the corresponding electron states are
bound. For F = Fc2 the one-electron energy levels reach
μr, i.e. the electrons cease to be bound and form resonant
states. Therefore, in the strong-field regime, the electrons
tunnel via these resonant states through the right barrier to the
right contact.

The nanodevice with the left QD larger than the right
one (figure 7) shows a similar electric-field behavior to that
obtained for the nanodevice with the left QD smaller than the
right one (figure 6) in the regime of low and intermediate
electric fields, i.e. J increases as a linear function of F .
However, after reaching the maximum value Jmax for F =
Fc1, the exchange energy rapidly falls to zero, i.e. the J (F)
dependence becomes qualitatively different from that shown
in figure 3. This behavior results from the rapid change in
electron localization that occurs at F = Fc1. For F � Fc1 the
electrons in the triplet state are localized in the different QDs.
For the triplet state, the increase of the electric field above Fc1

does not generate the double occupancy of the right QD but
leads to the immediate tunneling of one of the electrons to the
right electron reservoir. In the electric-field regime F > Fc1,
the right QD in this nanodevice cannot be occupied by the two
electrons in the triplet state, which causes that the exchange
interaction vanishes. We have found that for a sufficiently
strong electric field the energy of the first excited one-electron
state exceeds the electrochemical potential of the right contact,
i.e. the resonant state is formed. In this case, we are dealing
with the resonant tunneling via the first excited one-electron
state. We note that this one-electron state yields the largest
contribution to the triplet two-electron wavefunction.

We have also studied the dependence of the exchange
energy on the softness of the confinement potential. Figure 8
shows the maximum exchange energy Jmax as a function of
the softness parameter p. The maximal value Jmax is taken
for F = 0.7576 kV cm−1, i.e. in the plateau region, for
the nanodevice shown in the inset of figure 3. We see that
Jmax decreases if p increases, i.e. if the confinement potential
becomes more hard. This dependence can be approximated by
the exponential function:

Jmax(p) = A1 exp(−C1 p)+ B1, (10)

where A1 = 2.4740 meV, B1 = 1.4059 meV and C1 =
0.2091. The exponential parameterization (equation (10))
results from the fact that—for the fixed confinement potential
ranges—the effective quantum capacity of the QDs increases
with increasing p (cf the inset of figure 8). If p increases,
the electrons localized in the right QD become more separated

m
ax

Figure 8. Maximum exchange energy Jmax as a function of softness
parameter p for electric field F = 0.7576 kV cm−1. Dots show the
results of numerical calculations and the solid curve shows the fitted
exponential function (equation (10)). The parameters of the
nanodevice: Rlx = Rly = 20 nm, Rrx = 20 nm, Rry = 40 nm and
d = 80 nm. Inset: total potential energy U of the electron as a
function of x and p for y = 0 and for fixed F = 0.7576 kV cm−1.

from each other, which leads to the exponential decrease of the
overlap of electron wavefunctions, which in turn gives rise to
the exponential decrease of the exchange energy.

For a possible experimental realization of the model
nanodevices studied in the present paper it is interesting to find
a direct dependence of the exchange energy on the size of the
nanodevice. For this purpose we have calculated the maximum
exchange energy when scaling all the linear dimensions of the
coupled QD system. We consider the nanodevice displayed in
the inset of figure 3, for which the exchange energy takes on
the maximal values in the broad plateau region (cf figure 3
for p = 10). We have defined the size scaling factor as
s = Ractual/Rinitial, i.e. s is equal to the ratio of the actual linear
dimension Ractual to its initial value Rinitial. As the reference
nanodevice with initial values of the linear dimensions we take
that with Rlx = Rly = 20 nm, Rrx = 20 nm, Rry = 40 nm and
d = 80 nm (cf figure 3). The calculations of Jmax have been
performed for the set of nanodevices characterized by s times
enlarged confinement potential ranges, i.e. s Rlx , s Rly, s Rrx

and s Rry and interdot distance sd . In the calculations, we
fix the strength F of the electric field, i.e. we have to scale
accordingly the interelectrode distance L → sL and the
applied voltage V → sV . The numerical results are displayed
in figure 9 by the full (red) dots. In the interval 1 � s � 5
these results can be parameterized by the exponential function:

Jmax(s) = A2 exp(−C2s)+ B2, (11)

where A2 = 9.9040 meV, B2 = 0.0710 meV and C2 = 1.7874
(cf the solid curve in figure 9). The exponential dependence
(equation (11)) is similar to that given by equation (10) and
can also be interpreted as resulting from the size effect. If
the total size of the nanodevice increases (cf inset of figure 9),
the overlap between the one-electron wavefunctions decreases
exponentially with increasing s. Also the localization of
electrons in the QDs becomes weaker if the total size of
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m

ax

Figure 9. Maximum exchange energy Jmax as a function of size
scaling factor s for p = 10 and for electric field
F = 0.7576 kV cm−1. Dots show the results of numerical
calculations and the solid curve shows the fitted exponential function
(equation (11)). The initial sizes (s = 1) of the QD nanodevice are
Rlx = Rly = 20 nm, Rrx = 20 nm, Rry = 40 nm and d = 80 nm.
Inset: total potential energy U of the electron as a function of x and s
for y = 0 and for fixed F = 0.7576 kV cm−1.

the nanodevice grows. We note that parameterization (11)
is valid for s � 5 only. If the size of the nanodevice is
sufficiently large, i.e. the size scaling factor exceeds ∼5, the
exchange energy rapidly falls to zero. The disappearance of the
exchange interaction in the large-size nanodevice results from
the delocalization of electrons, which can be explained using
the potential energy profiles (cf inset of figure 9). In order to
keep the electric field constant when enlarging the nanodevice
size s times we have to apply an s times higher voltage. This
leads to the lowering of electrochemical potential μr = −eV
of the right contact. Simultaneously, the energy of the electrons
localized in the right QD grows with respect to μr. We have
checked that, for s � 5, the first excited-state one-electron
energy level exceeds the electrochemical potential of the right
contact. Moreover, the triangular barrier near the right contact
becomes more and more penetrable for the electrons if the size
of the nanodevice increases. In these conditions, one of the
electrons tunnels out of the right QD to the right reservoir and
the exchange interaction vanishes.

4. Discussion

The results of figures 3–5 show that—in the nanodevice which
consists of the elliptic QD—the static homogeneous electric
field applied in the coupled QD region can switch on and off
the exchange interaction. In the nanodevice which consists
of two circular QDs (figure 2), the exchange interaction is
non-zero at F = 0 and the increasing electric field can only
switch off the exchange interaction. This behavior (figure 2) is
similar to that observed in the single QD [33] (see footnote
1). In the nanodevices shown in the insets of figures 2–4,
the exchange energy exhibits a plateau in a broad electric-field
regime. This plateau ends up at the critical electric field Fc2,
above which the exchange energy abruptly vanishes. If the
electric field exceeds Fc2, one of the triplet electrons tunnels

E
 [m

eV
]

J 
[m

eV
]

F [kV/cm]

d

ESs

ETs

ESw

ETw

(0)

(1)

(2)

-80

-70

-60

-50

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Figure 10. Energy of singlet (ESw, ESs) and triplet (ETw, ETs) states
(left scale) and exchange energy J (dashed–dotted curves, right
scale) as functions of electric field F for two distances d between the
QD centers. The inset shows the geometry of the nanodevice.
Subscripts w and s correspond to the weak (d = 80 nm) and strong
(d = 40 nm) tunnel coupling, respectively. The other parameters of
the QDs are the same as in figure 3 with p = 10. For clarity the
curves with label s are shifted upwards by 5 meV. Thin vertical lines
show critical fields Fc0 and Fc1 for the weak tunnel coupling, while
the vertical arrow shows the cusp on the ETs(F) plot, which gives
rise to the corresponding cusp on the J (F) plot for the strong tunnel
coupling. Labels (0), (1) and (2) denote the electric-field regimes
[0, Fc0], [Fc0, Fc1] and [Fc1, Fc2], respectively, for the weak tunnel
coupling.

from the right QD to the right contact and the triplet state
ceases to be bound. Therefore, in this field regime, we cannot
speak about the exchange interaction. The electrons in the
singlet state become unbound if the electric field exceeds Fc2

by an amount �FS. We have found that �FS � �Flinear,
i.e.�FS is approximately equal to the width of the linear J (F)
dependence (equation (8)).

The critical electric field Fc2 increases with increasing p
(cf figures 2–4). Simultaneously, the increasing p leads to the
decreasing maximum value of the exchange energy reached
in the plateau region (cf figures 2 and 3). Both these effects
result from the increasing effective size of the QDs. For fixed
parameters Rlx , Rly, Rrx and Rry the effective size of the QD
increases with increasing p, i.e. increasing hardness of the
confinement potential (cf inset of figure 9). This leads to the
decreasing overlap between the electron wavefunctions and the
weaker electron localization, which in turn causes the decline
of the exchange energy. Moreover, if the effective size of the
QDs is larger, we have to apply the stronger electric field in
order to liberate one of the electrons from the right QD, which
gives rise to the increase of Fc2.

The critical electric field Fc0, below which J = 0 and
above which J > 0, decreases with increasing p (cf figures 2–
5). This dependence results from the decreasing effective
thickness of the potential barrier separating both the QDs with
increasing p (cf inset of figure 9). If the barrier is thinner, the
electrons tunnel through it with the larger probability and the
right QD becomes doubly occupied at the lower electric field.

In the low- and intermediate-field regime, the nanodevices
with the laterally coupled QDs possess an important property:

8
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the exchange energy is a linear function of the electric field,
i.e. it can be conveniently tuned by changing the external
voltage. In the nanodevice with the small right QD (cf
figure 5), the increasing electric field switches on the exchange
interaction at F = Fc0, leads to the linear increase of J
in a broad regime of F and switches it off at F = Fc1.
Recently, the linear dependence of the exchange interaction
energy on the electric field has been found in vertically coupled
self-assembled QDs [26]. In the present paper, we have
obtained this linear dependence for the laterally coupled QDs
with different geometric configurations and different softness
of the confinement potential (cf figures 2–5). The electric-
field regime �Flinear of this linear dependence is considerably
broader in the nanodevices that contain the small right QD
(figure 5) than in the nanodevices with the large right QD
(figures 2–4). According to figure 5, �Flinear extends to
∼0.8 kV cm−1. For comparison, in figures 2–4, �Flinear �
0.2 kV cm−1. The larger width of the interval�Flinear obtained
for the nanodevice depicted in the inset of figure 5 causes
that the maximum value Jmax of the exchange energy is
considerably larger than that for the nanodevices shown in
figures 2–4. In the former case, Jmax reaches 6 meV.

In order to get a more deep physical insight into the linear
J (F) dependence, we have investigated the behavior of the
lowest singlet and triplet energy levels. We have found that—
in the regime 0 � F � Fc2—the field dependence of these
energy levels can be very accurately parameterized by the
linear functions (figure 10)

E (i)
S,T(F) = α

(i)
S,T F + β

(i)
S,T, (12)

where i = 0, 1, 2. The parameters α(i)S , α(i)T , β(i)S and β(i)T
take on different values in the different regimes of the electric
field, i.e. [0, Fc0], [Fc0, Fc1], [Fc1, Fc2], which we label (0),
(1) and (2), respectively, but are independent of F within each
regime. In the low-field regime, i.e. for 0 � F � Fc0,
α
(0)
S = α

(0)
T and β(0)S = β

(0)
T , which leads to the zeroing of

the exchange energy, i.e. the singlet–triplet degeneracy. In the
intermediate-field regime, i.e. for Fc0 � F � Fc1, the singlet–
triplet degeneracy is lifted. In this field regime, α(1)S < α

(1)
T

and β(1)S > β
(1)
T . Therefore, we obtain α = α

(1)
T − α

(1)
S > 0

and β = β
(1)
T − β

(1)
S < 0, which leads to the linear J (F)

dependence (equation (8)).
It is interesting that—for the nanodevices shown in the

insets of figures 2 and 3—linear parameterization (12) is also
valid in the regime of rather strong electric fields, i.e. for
Fc1 � F � Fc2. The values of the parameters α(2)S,T and

β
(2)
S,T are different from those obtained for the lower fields, but

are approximately constant within this field regime. In field
regime (2), α(2)S � α

(2)
T and β(2)T > β

(2)
S , which gives rise

to the plateau of the exchange energy (cf figures 2–4) with
Jmax � β

(2)
T − β

(2)
S = const.

We have also found another interesting feature of linear
parameterization (8). The parameter α = �J/�F that
determines the rate of changes of the exchange energy with
the electric field in field regime (1) (cf equation (8)) takes
on almost the same values for all the nanodevices described
by the parameters quoted in the captions of figures 2–5. The

c

Figure 11. Expectation value 〈xc〉 of the charge gravity center
position as a function of electric field F for the singlet (subscript S,
curves with full circles and squares) and triplet states (subscript T,
curves with open circles and squares) for d = 40 nm (subscript s, red
curves) and d = 80 nm (subscript w, blue curves). The nanodevice is
the same as in figure 10.

parameter α is independent of the softness of the confinement
potential and the geometry of the nanodevice (cf figures 2–
5). Considering all the J (F) dependences displayed in
figures 2–5, i.e. studying several different nanodevices, we
have found that α = 7.73 ± 0.13 (meV (kV/cm)−1). In
the lateral QDs, the linear J (F) dependence is a non-trivial
property that cannot be explained by the non-degenerate first-
order perturbation theory [26]. This effect occurs in the
intermediate-field regime, in which the electron wavefunctions
are considerably distorted with respect to those for F = 0
(cf figures 6 and 7). In particular, we note the abrupt change
of the singlet-state localization in the low- and intermediate-
field regime. Moreover, we have found that, even for the
same geometric configuration of the QDs and in the same
electric-field regime, the linear J (F) dependence disappears
if the tunnel coupling between the QDs is sufficiently strong.
In order to show this effect, we have considered the two
nanodevices with the geometric configuration shown in the
inset of figure 10. In figures 10 and 11, subscripts w and
s correspond to the results for the weak and strong interdot
tunnel coupling, respectively. Figure 10 displays the results
for the two nanodevices characterized by different separations
d between the QD centers and the same values of all other
parameters. For d = 80 nm, i.e. for the weak interdot
tunnel coupling, the singlet and triplet energies as well as the
exchange energy are linear functions of the electric field. We
also observe the cusp on the curve ETw(F), which leads to the
corresponding cusp on the curve J (F). In the low electric-
field regime and for the weak tunnel coupling, the exchange
interaction vanishes due to the singlet–triplet degeneracy. For
d = 40 nm, i.e. for the strong tunnel coupling, a completely
different J (F) behavior has been obtained. In this case, the
singlet-state energy is a nonlinear function of the electric field,
which leads to the nonlinear J (F) dependence. However, the
triplet energy ETs is a piecewise linear function of F with the
cusp shown by the arrow in figure 10. In the low electric-field
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regime and for the strong tunnel coupling, the singlet–triplet
degeneracy is lifted and the exchange interaction is non-zero
even for F = 0.

The linear/nonlinear J (F) dependence can be further
discussed if we consider the changes of the charge gravity
center position, i.e. xc = (x1 + x2)/2. We have calculated the
expectation value 〈xc〉 for the weak and strong interdot tunnel
coupling using the field-dependent two-electron wavefunctions
(r1, r2) for the singlet and triplet states. According to
equation (4), the value 2〈xc〉 determines the electric-field
contribution to the potential energy of two electrons. Figure 11
shows that 〈xc〉 is a linear function of F for the triplet states
in both the cases of weak and strong tunnel coupling and for
the singlet state only in the case of weak tunnel coupling.
However, for the singlet state and the strong tunnel coupling
the dependence of 〈xc〉Ss on the electric field is nonlinear.
We also observe that the expectation values 〈xc〉Sw, 〈xc〉Tw,
and 〈xc〉Ts exhibit jumps at certain values of the electric field;
besides, they are linear functions of F . Figure 11 shows
that the charge gravity center position follows the electron
distribution shown in figure 8 for d = 80 nm. At low electric
fields, the center of charge gravity is localized near the center
of the nanodevice, i.e. at x � 0, for the triplet as well as
the singlet states, which results from the single occupancy of
both the QDs. The increasing electric field only slightly shifts
〈xc〉 towards the right QD. The single QD occupancy remains
unchanged for the triplet state up to F = Fc1. However, for
the singlet state the second electron tunnels to the right QD
at F = Fc0, which leads to the jump of 〈xc〉Sw (figure 11).
For F � Fc1 and the weak tunnel coupling the charge gravity
center is approximately localized near the center of the right
QD in both the spin states (cf the plots of 〈xc〉Sw and 〈xc〉Tw in
figure 11). For the weak tunnel coupling, the localization of the
electrons in the singlet state remains almost unchanged in the
regime Fc0 � F � Fc1. For the strong tunnel coupling 〈xc〉Ss

increases as a nonlinear function of F starting from a non-zero
value for F = 0. In the triplet state, the jump of 〈xc〉Ts at
F = Fc1 originates from the abrupt change of the localization
from single to double occupancy of the right QD.

5. Conclusions and summary

The results of the present paper allow us to discuss the effect
of external electric fields of different origins on the electronic
properties of QD nanodevices. The electric fields can be
created by the different electrodes which surround the QD
region. In a direct way, we have investigated the effect
of the static homogeneous electric field, which is usually
created by the source and drain electrodes. In an indirect
way, we have also studied the effect of the gate electrodes.
We are able to determine the effect of the gates, since
the gate-controlled QDs (electrostatic QDs) [31, 30, 32] are
induced by the inhomogeneous electric field, which is created
by the gates. Therefore, the QD confinement potential, in
particular, its shape, range, potential well depth and softness,
are determined by the voltages applied to the gates. This means
that in studying the dependence of the electron states on these
parameters of the confinement potential we have investigated
the effect of the gates.

In the present paper, we focus on the exchange interaction,
which plays an important role in the manipulation of spin
qubits [1–3, 5]. The exchange energy can be effectively
tuned by changing the external electric field, i.e. changing
the voltages applied to the electrodes. By increasing the
electric field (bias voltage) we can switch on/off the exchange
interaction. The critical values of the electric field, for which
this on/off switching occurs, depend on the softness of the
confinement potential, i.e. can be changed by changing the
gate voltages. We have found the QD nanodevices that
exhibit the plateau of the exchange energy versus electric-field
dependence. In the plateau regime, the exchange energy is
maximal. Therefore, the on/off switching of the exchange
interaction occurs between J = 0 and Jmax. We have
determined the critical electric fields and optimal nanodevice
parameters for which this switching is the most effective.

We have shown that—in the nanodevices with the weakly
coupled lateral QDs at moderate electric fields—the exchange
energy is a linear function of the electric field. We have found
that the parameter α = �J/�F that determines the rate of
changes of J (F) is nearly the same for different nanodevices.
The constancy of α suggests that this parameter is universal
for a large class of nanodevices based on laterally coupled
QDs, provided that the interdot tunnel coupling is weak. We
have also demonstrated that for the sufficiently strong interdot
tunnel coupling the J (F) dependence becomes nonlinear.

The numerical method (see the appendix) applied in the
present paper is convenient for calculations of few-electron
states in QDs in the external electric field. Among several
advantages (cf the appendix) of this approach, we would like
to underline the most important one. Namely, this numerical
procedure possesses the following physical property: in the
low- and intermediate-field regime, it allows us to describe
bound states of electrons in an electric field of finite range,
which acts in the real nanodevices. Let us mention that in an
electric field of infinite range, assumed in the other papers on
this subject [3, 21, 26], one always deals with non-stationary
states.

In summary, we have shown how to control and tune the
exchange interaction with the help of the external electric field.
We have taken into account an electric field of finite range,
which allows us to investigate real nanodevices. We have
also applied the realistic profile for the potential confining the
electrons in the QDs. We have shown that the external electric
field can switch on/off the exchange interaction. The linear
variation of the exchange energy with the electric field can be
applied to an effective tuning of the exchange interaction by
the external voltage. Since the exchange interaction changes
the electron spin states, the present results should be helpful
in designing nanodevices with an all-electrical mechanism of
spin qubit processing.
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Appendix. Computational method

We give a description of the numerical method applied in the
present paper in order to obtain the one-electron wavefunctions
in the discrete representation that is convenient in two-
electron calculations. This method has been recently used in
calculations of electron states in coupled circular QDs [33]
(see footnote 1) and quantum rings [34]. For the sake of
completeness we provide here a detailed description of this
method and discuss its advantages.

First, we set up the computational box (figure A.1) for the
given geometric parameters of the QD nanodevice. Usually,
we take on its x extension Lx = 400 nm and y extension
L y = 140 nm. Next, we solve the one-electron Schrödinger
equation by variational means. For this purpose we apply the
multi-center Gaussian basis defined inside the computational
box:

gi j(x, y) = exp[−γ1(x − xi)
2 − γ2(y − y j)

2], (A.1)

where γ1 and γ2 are the variational parameters.
The centers of Gaussians (xi , y j ), where i = 1, . . . , I

and j = 1, . . . , J , form a grid within a large rectangle, which
encompasses both the QDs. i.e. the edges of the rectangle are
longer than the double range of the confinement potential in
each direction (cf figure A.1). The Gaussians (A.1) are chosen
to cover the region of electron localization in the QDs and
the region of the right electrode to which the electrons are
shifted. The variational wavefunction φν(x, y) for the one-
electron state ν is taken in the form of a linear combination
of Gaussians (A.1):

φν(x, y) = Cν

I∑

i=1

J∑

j=1

cνi j gi j(x, y), (A.2)

where Cν is the normalization constant. The values of I and
J are chosen according to the actual size of the nanodevice
and extend up to Imax = 50 and Jmax = 33. This means that
we have at our disposal 1650 Gaussians (A.1), which ensures
the high accuracy of one-electron solutions. The matrix
elements of the one-electron Hamiltonian (7) are calculated
in basis (A.1) as follows: the matrix elements of the kinetic
energy are calculated analytically and the matrix elements of
the potential energy are calculated by a numerical quadrature.
Solving the generalized eigenvalue problem of Hamiltonian (7)
in basis (A.1) we obtain the linear parameters cνi j and energy
eigenvalues Eν for one-electron states ν = 1, . . . , Nν . The
values of the nonlinear variational parameters γ1 and γ2 are
determined from the minimization of the ground-state energy
E0. We have checked that γ1 and γ2 change only slightly when
minimizing the excited-state energy; therefore, we take γ1 and
γ2 to be the same for each state ν.

In the last step, we define the fine grid (xm, yn), where
m = 1, . . . ,M and n = 1, . . . , N , and find the discrete
representation of the one-electron wavefunctions by setting the
M × N matrix:

φmn
ν = φν(xm, yn). (A.3)

The one-electron wavefunctions in representation (A.3) are
used to construct the Slater determinants and next we perform
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Figure A.1. (a) Profile of electron potential energy U as a function
of x for y = 0 and F = 1.2625 kV cm−1. Symbols l and r denote the
left and right electrode, respectively. Vertical dashed lines
correspond to the boundaries of the electrodes. (b) Schematic of the
computational box. Thick (red) dots display the positions of the
centers of Gaussians and thin (black) dots show the grid points used
in the discrete representation (A.3). The nanodevice parameters used
in the plots: Rlx = Rly = 20 nm, Rrx = 40 nm, Rry = 40 nm,
p = 10 and d = 80 nm.

the CI calculations. In the two-electron calculations, we have
used Nν = 13 one-electron states to construct up to NS = 169
Slater determinants. The number of mesh points was M × N =
123 × 91.

We would like to emphasize the following advantages of
the present approach. (i) It allows us to solve the electron
eigenproblem in the real nanodevice, in which the electric
field has a finite range, i.e. the voltage is applied between
the electrodes separated by a finite distance. This numerical
feature possesses an important physical consequence: if the
electric field is not too strong, we are dealing with the well-
defined stationary bound states. It is commonly assumed that
the electric field possesses an infinite range, i.e. instead of the
form (4) the potential energy has the form �U = −eFx for
−∞ < x < +∞. In this case, the electron states are unbound
for arbitrary F . This assumption leads to serious problems
with the physical interpretation of the calculated states and
does not allow for a rigorous description of the real finite-size
nanodevices. (ii) It can be applied to arbitrary confinement
potential and inhomogeneous electric field. In particular, this
approach can be easily extended to multiple coupled QDs with
more than two QDs. (iii) The present approach can be extended
to few-electron systems with more than two electrons and to
three-dimensional (3D) nanostructures.
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[33] Kwaśniowski A and Adamowski J 2009 Phys. Status Solidi C

6 821
[34] Chwiej T and Szafran B 2008 Phys. Rev. B 78 245306

12

http://dx.doi.org/10.1103/PhysRevA.76.032302
http://dx.doi.org/10.1103/PhysRevB.67.161308
http://dx.doi.org/10.1063/1.1757023
http://dx.doi.org/10.1103/PhysRevLett.91.226804
http://dx.doi.org/10.1126/science.1111205
http://dx.doi.org/10.1063/1.2767197
http://dx.doi.org/10.1103/PhysRevB.60.8759
http://dx.doi.org/10.1103/PhysRevB.62.2605
http://dx.doi.org/10.1007/s100530170133
http://dx.doi.org/10.1103/PhysRevA.66.042328
http://dx.doi.org/10.1103/PhysRevLett.88.226804
http://dx.doi.org/10.1103/PhysRevLett.91.187401
http://dx.doi.org/10.1103/PhysRevB.70.205318
http://dx.doi.org/10.1103/PhysRevB.72.205432
http://dx.doi.org/10.1109/TNANO.2006.877017
http://dx.doi.org/10.1103/PhysRevB.74.205306
http://dx.doi.org/10.1109/TNANO.2007.891832
http://dx.doi.org/10.1103/PhysRevB.76.125323
http://dx.doi.org/10.1103/PhysRevB.78.085310
http://dx.doi.org/10.1103/PhysRevB.78.035418
http://dx.doi.org/10.1088/0953-8984/20/39/395225
http://dx.doi.org/10.1088/0953-8984/20/21/215208
http://dx.doi.org/10.1103/PhysRevB.75.205308
http://dx.doi.org/10.1016/S1386-9477(02)00572-6
http://dx.doi.org/10.1103/PhysRevB.68.155333
http://dx.doi.org/10.1103/PhysRevB.77.115320
http://dx.doi.org/10.1002/pssc.200880592
http://dx.doi.org/10.1103/PhysRevB.78.245306

	1. Introduction
	2. Theory
	3. Results
	4. Discussion
	5. Conclusions and summary
	Acknowledgments
	Appendix. Computational method
	References

